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INTRODUCTION: 

Emerging evidence points to a particularly important role of fibroblasts within in the 
tumor stroma in promoting phenotypic changes that allow the extracellular matrix to 
evolve and contribute to the invasiveness of epithelial tumor cells.  However, how 
stromal fibroblasts that promote cancer progression are poorly understood and are only 
beginning to emerge.  The Leone laboratory has developed a system to conditionally 
manipulate the mouse genome in stromal fibroblasts of the mammary gland (FSP-cre).  
Using this genetic system we present preliminary data suggesting that Pten function in 
mammary stromal fibroblasts plays a critical role in the progression of ErbB2-initiated 
mammary epithelial tumors.  The task at hand is to now genetically and biochemically 
identify the key ‘stroma-specific’ tumor suppressor activities of Pten, and to then relate 
these stroma-specific functions to the structural and molecular events taking place during 
tumor progression.   

The immense genetic and cellular diversity of the tumor microenvironment, however, has 
made the problem of cancer progression difficult to address by traditional experimental 
approaches.  The Leone and Saltz groups have therefore joined expertise to develop novel 
genetic and high-resolution 3D bioinformatics models that integrate spatial and 
molecular information relating to the genetics and biochemical properties of the tumor 
microenvironment.  These models will provide an effective platform for identifying the 
relationships between the different cell compartments of the tumor microenvironment 
that are critical for cancer progression. The proposed studies will fall into two major 
efforts, each divided into two phases.  The first major effort involves the genetic analysis 
of Pten in mouse tumor models.  The progress report outlined below describes the 
progress made in this phase of the study.  The work is now being prepared for 
publication. 

 
BODY: 
 
Coordinated signaling between different cell types of the ‘normal stroma’ is required 
during embryonic and adult development (Wiseman BS, Werb Z, 2002.).  While cellular and 
ECM activities of the stroma are maintained in balance throughout development, they can 
be appropriately activated in response to extreme but normal physiological cues, such as 
wounding, inflammation or pregnancy (Schedin P. 2006).  The stroma can also be 
inappropriately activated, such as in cancer (Nelson CM, Bissell MJ.  2006).  Fibroblasts are a 
principal constituent of the stroma responsible for the synthesis of growth and survival 
factors, chemokines, structural components of the ECM and enzymes that control its 
turnover.  In breast tumors, stromal fibroblasts are believed to adapt and continuously co-
evolve along with tumor epithelial cells (Littlepage et al., 2005).  Fibroblasts are 
implicated in fostering transformation and tumor growth by providing factors that induce 
epithelial cell proliferation, ECM remodeling and blood vessel recruitment (Bhowmick et 
al., 2004b; Mueller and Fusenig, 2004; Kalluri and Zeisberg, 2006).  Despite extensive 
evidence for a role of the tumor stroma in carcinogenesis, relatively little is known about 
the signaling pathways involved in the communication between the different cellular 
compartments of the tumor microenvironment that contribute to the cancer phenotype.  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12004111&ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=16557280&ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16824016&query_hl=63&itool=pubmed_DocSum


Phosphatase and tensin homolog (PTEN) is a tumor suppressor with lipid and 
protein phosphatase activity (Myers et al., 1998) that impacts several signaling pathways, 
including phosphoinositide 3-kinase (PI3K), and Ras-MAPK-Erk1/2 signaling pathways.  
Pten inactivation in mice and humans leads to a disruption in cell polarity, cell 
architecture, and chromosomal integrity as well as in the promotion of cell cycle 
progression, cell growth and stem cell self–renewal (Di Cristofano and Pandolfi, 2000).  
Not surprisingly, it’s somatic or germ-line inactivation contributes to the genesis of many 
tumor types primarily epithelial in origin.  While tremendous progress in understanding 
PTEN function in tumor cells has been made since its discovery over a decade ago, 
relatively little is known about its potential role in the tumor stroma. Patients with 
Cowden syndrome  have germline mutations in PTEN, suggesting that the higher risk for 
developing breast cancer in these patients could be due to PTEN activity in either 
epithelial or stromal compartments.  Here, we have generated a mesenchymal-specific 
Fsp-cre transgene and conditional alleles of Pten (PtenloxP) in mice to ablate its function 
in mammary stromal fibroblasts in vivo and rigorously evaluate its role in the tumor 
microenvironment.  We show that Pten ablation in mammary stromal fibroblasts results 
in the induction and activation of Ets2-P(T72), massive remodeling of the ECM, 
recruitment of innate immune cells, and enhanced progression and malignancy of 
mammary tumors of epithelial origin.  These findings expand Pten’s repertoire as a tumor 
suppressor by identifying the fibroblast as a key site from which it exerts its powerful 
tumor suppressive influence on adjacent epithelium.   
 
For well over a century, the pathology of cancer suggested that malignant tumors consist 
of a complex cellular system dependent on reciprocal signaling between tumor cells and 
the adjacent stroma.  The signaling pathways involved in the communication between the 
various cell types in the tumor remain virtually unknown.  We recently developed a 
mesenchymal-specific cre mouse and used it here to target the inactivation of Pten in 
mammary stromal fibroblasts of the mammary gland and examine, for the first time, its 
role in the tumor microenvironment in vivo. This work identified the Pten-Ets2 pathway 
as a key regulatory axis in stromal fibroblasts that profoundly attenuates malignant 
characteristics of the tumor microenvironment and suppresses mammary epithelial 
tumors. 

The tumor suppressor functions of Pten have been extensively studied in the 
tumor cell, but whether it also plays a role in other cell compartments of the tumor was 
unknown.  We show direct in vivo evidence for a critical tumor suppressor role of Pten in 
the tumor microenvironment.  Genetic ablation of Pten in stromal fibroblasts of the 
mammary gland resulted in a dramatic perturbation of the tumor microenvironment by 
increasing ECM deposition and a host of activities imbedded in it that together favor the 
initiation and progression of mammary epithelial tumors.  This novel function of Pten in 
maintaining homeostasis within the mammary microenvironment may also be relevant in 
the suppression of epithelial tumors of other organs.  Such a role for Pten may extend 
beyond cancer, to conditions where the microenvironment is speculated to profoundly 
impact disease manifestation including in autoimmune syndromes, lung fibrosis and 
neurodegeneration.  Interestingly, the stromal Pten expression signature identified here 
includes genes that have been causally linked with ECM deposition and inflammation in 
rheumatoid arthritis, lung fibrosis and neurodegeneration. 



KEY RESEARCH ACCOMPLISHMENTS: 

TASK 1 (month 3- 18): Paper in re-submission to Nature (Trimboli et al.) attached. 

TASK 2 (months 3-18): Work dealing with Pten in progress.  Paper in progress (Hui 

Wang et al.).  Work behind approximately 8 months. 

TASK 3 (month 12-18):  See Nature (Trimboli et al.) article attached.  This task is 

addressed in this article. 

TASK 4 (month 18-24):Partly completed.  Also addressed in Nature (Trimboli et al.) 

article attached.  The component dealing with regional areas of stroma 

(macrophages) is ongoing. 

TASKS 5-7 (month 1- 24): Work on these tasks is ongoing.  The no cost extension is 

requested to complete this important component of this project.  The 

“segmentation” component (see figure 1 below) has encountered significant 

technical hurdles dealing with image segmentation, but even so, we feel that these 

can be overcome in the next 6 months. 

 

Figure 1: Scientific Processes Involved in Creation of BIIS
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REPORTABLE OUTCOMES: 

1. Manuscripts in preparation 

A. Trimboli et al. Pten in Stromal Fibroblasts Suppresses Mammary Epithelial 

Tumors. 

B. Cantemir et al. Tumor Fibroblasts and Ets2 Regulate Angiogenesis in Breast 

Cancer. 

 

2. Submitted an NCI grant application (U01) that is related to this work. 

 

CONCLUSIONS: 

The mechanism by which Pten in the stroma regulates the expression of such an 
extensive set of genes likely involves complex transcriptional networks.  The importance 
of the Pten-Ets2 axis in stomal fibroblasts is consistent with previous work from Oshima 
and colleagues that showed a critical cell non-autonomous role for Ets2 in mammary 
tumor growth (Tynan et al. 2005).  Moreover, analysis of tumor-stroma gene expression 
signatures identified Ets2 activation as a key event associated with breast cancer patients 
having the worst prognosis (Park et al., 2007).  In summary, this study offers a molecular 
basis for how altered signaling from the tumor stroma contributes to the most malignant 
characteristics of the breast cancer phenotype.  
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SUMMARY  

 

The tumor stroma is believed to contribute to some of the most malignant 

characteristics of epithelial tumors.  However, signaling between stromal and tumor 

cells is complex and remains poorly understood.  Here we show that the genetic 

inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated 

the initiation, progression and malignant transformation of mammary epithelial 

tumors.  This was associated with the massive remodeling of the extra-cellular 

matrix (ECM), innate immune cell infiltration and increased angiogenesis.  Loss of 

Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and 

recruitment of Ets2 to target promoters known to be involved in these processes.  

Remarkably, Ets2 inactivation in Pten stroma-deleted tumors ameliorated 

disruption of the tumor microenvironment and was sufficient to decrease tumor 

growth and progression.  Global gene expression profiling of mammary stromal 

cells identified a Pten-specific signature that was highly represented in the tumor 

stroma of breast cancer patients.  These findings identify the Pten-Ets2 axis as a 

critical stroma-specific signaling pathway that suppresses mammary epithelial 

tumors. 
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Coordinated signaling between different cell types of the ‘normal stroma’ is required 

during embryonic and adult development1.  The stroma can be appropriately activated in 

response to extreme but normal physiological cues, such as wound, inflammation or 

pregnancy2. The stroma can also be inappropriately activated in cancer3, 4. In breast 

tumors, stromal fibroblasts are believed to adapt and continuously co-evolve along with 

tumor epithelial cells in order to foster transformation and tumor growth5.  Fibroblasts are 

a principal constituent of the stroma responsible for the synthesis of growth and survival 

factors, angiogenic and immunological chemokines, and structural components of the 

ECM as well as enzymes that control its turnover6, 7.  Despite extensive evidence for a 

role of the tumor stroma in carcinogenesis, relatively little is known about the signaling 

pathways involved in the communication between the different cellular compartments of 

the microenvironment that contribute to the cancer phenotype.  

Alterations in the phosphoinositide 3-kinase (PI3K) pathway are associated with 

the activation of tumor-associated stroma8, 9.  One of the main regulators of PI3K 

signaling is the phosphatase and tensin homolog (PTEN), a tumor suppressor with lipid 

and protein phosphatase activity10, 11.  PTEN inactivation disrupts multiple cellular 

processes associated with cell polarity, cell architecture, chromosomal integrity, cell 

cycle progression, cell growth and stem cell self–renewal12, 13.  Germ-line inactivation of 

a single allele of PTEN in both human and mice contributes to the genesis of a variety of  

tumor types of epithelial origin14.  While tremendous progress in understanding PTEN 

function in tumor cells has been made since its discovery over a decade ago, relatively 

little is known about its potential role in the tumor stroma.  Here, we show that Pten 

ablation in mammary stromal fibroblasts of mice results in massive remodeling of the 
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ECM and tumor vasculature, recruitment of innate immune cells, and increased 

malignancy of mammary epithelial tumors.  Gene expression profiling of Pten-deleted 

stromal fibroblasts identified an Ets2–specific transcription program associated with 

many of these aggressive tumor phenotypes.  Remarkably, the concomitant inactivation 

of Ets2 in the mammary stroma reversed the increased malignancy caused by Pten 

deficiency.  These findings expand Pten’s repertoire as a tumor suppressor by identifying 

the fibroblast as a key site from which it exerts its powerful tumor suppressive influence 

on the adjacent tumor epithelium. 

 

RESULTS 

Pten in stromal fibroblasts suppresses mammary tumors of epithelial origin 

To rigorously evaluate the role of Pten in the tumor microenvironment of breast cancer 

we generated mice containing a mesenchymal-specific Fsp-cre transgene15 and 

conditional alleles of Pten (PtenloxP; Supplementary Fig. 1).  Cell type-marker analysis 

using a -galactosidase Rosa26LoxP reporter allele showed specific Fsp-cre expression in 

stromal fibroblasts surrounding the mammary epithelial ducts, with no expression in 

cytokerin-positive epithelial cells, F4/80-positive macrophages and CD31-positive 

endothelial cells (Fig. 1a, Supplementary Fig. 2a, 2b).  Southern, PCR and Western blot 

assays demonstrated efficient cre-mediated deletion of PtenloxP in stromal fibroblasts 

isolated from Fsp-cre;PtenloxP/loxP mammary glands (data not shown and Fig. 1b, 1c).  

Examination of mammary sections by immunohistochemistry (IHC) showed deletion of 

PtenloxP that was confined to stromal fibroblasts, with no collateral deletion in epithelial 

ducts or the adjacent myoepithelium (Fig. 1d, Supplementary Fig. 3a, 3b).  Interestingly, 
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this resulted in the expansion of the ECM, but did not lead to the transformation of the 

mammary epithelium (Fig 1d, 2b). 

We then examined the role of stromal Pten on mammary tumorigenesis using two 

established mouse models of breast cancer, MMMTV-ErbB2/neu (ErbB2)16 and MMTV-

rtTA;teto-MYC (MYC)17, 18.  While not representative of all known genetic abnormalities 

in breast cancer, these two mouse models have unique molecular, cellular and clinical 

features that can be used to evaluate different aspects of this heterogeneous disease.  To 

avoid possible confounding effects caused by Pten deletion in mesenchymal cells of other 

organs, mammary glands from Fsp-cre;PtenloxP/loxP (n=5), ErbB2;PtenloxP/loxP (n=12), 

MYC;PtenloxP/loxP (n=20), ErbB2;Fsp-cre;PtenloxP/loxP (n=16) and MYC;Fsp-

cre;PtenloxP/loxP (n=26) donors were transplanted into syngeneic wild-type recipients and 

tumor development was monitored over the course of several months19.  By genetically 

marking the stroma with the Rosa26LoxP reporter allele, we could show that both the 

epithelium and its associated stroma were effectively transplanted into host female mice 

(Supplementary Fig. 4).  By 16 weeks post-transplantation, loss of Pten in stromal 

fibroblasts dramatically increased the incidence of ErbB2-driven mammary tumors (Fig. 

2b).  By 26 weeks most of these females met the criteria for early removal due to 

excessive tumor burden, whereas few control ErbB2 females had palpable tumors (Fig. 

2a-d).  Stromal deletion of Pten also dramatically accelerated development of MYC 

mammary tumors (Fig. 2e-g).  By 16 weeks post-transplantation, most of these lesions 

progressed to adenoma, carcinoma in situ and invasive carcinoma (Fig. 2h).  Histological 

examination showed that ErbB2- and MYC-tumor cells in Pten stromal-deleted tumors 

retained their typical oncogene-specific morphology.  ErbB2-cells had small nuclei, fine 
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chromatin and abundant eosinophilic cytoplasm19, whereas MYC-tumor cells had 

pleomorphic nuclei with coarse chromatin and amphophilic cytoplasm.  In contrast to 

non-deleted tumors, which typically had relatively little stromal contribution19, 20, Pten 

stromal-deleted tumors had a significant amount of stroma surrounding and infiltrating 

the epithelial masses (Fig. 2d, 2h).  PCR-based and immunohistochemical assays 

confirmed that all tumors had an intact PtenloxP allele in the epithelial compartment 

(Supplementary Fig. 5a, 5b and data not shown).  Thus, the analysis of two distinct breast 

cancer tumor models identified a potent tumor suppressor role for Pten in stromal 

fibroblasts of the mammary gland. 

 

Pten in stromal fibroblasts controls ECM and innate immune functions.   

To investigate the tumor suppressive mechanism of Pten action in stromal fibroblasts, we 

profiled the transcriptome of mammary stromal fibroblasts isolated from PtenloxP/loxP 

(n=3) and Fsp-cre;PtenloxP/loxP (n=3) females.  Details of sample collection, processing of 

Affymetrix oligo-arrays and expression data are available in the Methods section.  

Briefly, we implemented class comparison analyses of all probe sets on the Affymetrix 

mouse genome 430 2.0 array to identify genes differentially expressed between the two 

genetic groups.  We also used an unbiased approach similar to Gene Set Enrichment 

Analysis9 to identify a priori defined groups of genes that were significantly 

differentially expressed. The analysis of over 14,000 mouse genes identified 129 

upregulated and 21 downregulated genes in response to Pten deletion (Supplementary 

Fig. 6a, 6b; >4-fold at p <0.001; Supplementary Tables 1 and 2).  Quantitative RT-PCR 

assays of a subset of genes confirmed >85% of these expression changes using 
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independent fibroblast samples (Supplementary Fig. 6c, 6d, and Supplementary Table 3) 

and the lack of macrophage-, endothelial- and epithelial-specific expression confirmed 

the purity of the fibroblast preparations used for these microarrays (Supplementary 

Figure 6d).  Functional annotation21, 22 (GO) of Pten-responsive targets revealed a 

remarkable bias toward genes encoding proteins involved in ECM remodeling, wound 

healing and inflammation (Fig. 3a).  Given this unexpected convergence of function in 

Pten stromal-deleted mammary glands, we performed a more thorough cellular and 

molecular analysis of Pten-deleted stroma.  Staining of consecutive mammary gland 

sections with H&E and Mason’s trichrome stains indicated enhanced deposition of 

collagen in Pten-deleted stroma that was independent of ErbB2-oncogene expression 

(Fig. 3b, and Supplementary Fig. 7a).  IHC and Western blot assays using collagen type-

specific antibodies showed that the non-cellular material consisted mostly of type-I 

collagen and not the basement membrane type-IV collagen (Fig. 3b, and Supplementary 

Fig. 7b, 7c).  GO analysis also suggested that Pten in stromal fibroblasts influenced the 

expression of a complex network of chemokines, cytokines and receptors known to 

support chronic inflammation21, 22.  Quantification of innate and adaptive immune cells 

showed significant infiltration of F4/80-positive macrophages into stromal Pten-deleted 

mammary glands (Fig. 3d, 3e), which was also independent of ErbB2-oncogene 

expression (Supplementary Fig. 8).  The abundance of B- and T- cells did not change in 

response to stromal deletion of Pten (data not shown).  From these experiments we 

conclude that ablation of Pten in stromal fibroblasts recapitulates two key events 

associated with tumor malignancy: increased ECM deposition and innate immune cell 

infiltration.  
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Loss of stromal Pten activates an Ets2-dependent transcriptional program 

Along with the remarkable remodeling of the tumor microenvironment, loss of Pten in 

stromal fibroblasts resulted in the activation of the Ras, JNK and Akt pathways.  Western 

blot analysis using protein lysates derived from Pten-deleted stromal fibroblasts 

demonstrated an increase in the phospho-specific forms of Akt (T308 and S473) and JNK 

(T183 and Y185) (Fig 3a).  Immunohistochemical assays confirmed the activation of Akt 

and JNK in stromal fibroblasts, and interestingly, also revealed a profound activation of 

these two pathways in ductal epithelial cells adjacent to the Pten-deleted stroma (Fig. 3g 

and data not shown).  This analysis also showed increased levels of phospho-Erk1/2 in 

Pten-deleted stromal fibroblasts (Fig. 3g), however, this increased could not be detected 

in primary cultured fibroblasts, presumably due to the constitutive Pten-independent 

activation of Erk1/2 by serum-stimulation23.  

 Among the many expression changes observed in Pten-deleted stromal fibroblasts 

we noted that there was a significant increase in Ets2 mRNA levels (2.8 fold, p <0.001).  

This induction is notable because the Ets2 transcription factor is known to be 

transcriptionally induced by MAPK24-26 activation and its function to be post-

translationally enhanced by the Akt- and JNK-mediated phosphorylation of its pointed 

domain at threonine 72 (Ets2T72)23, 27.  Quantitative RT-PCR and Western blot assays 

confirmed the higher levels of Ets2 mRNA and protein in Pten-deleted relative to control 

fibroblasts (~2.5-fold, p<0.001; Fig. 4a, 4b).  Immunofluorescense (IF) assays using 

vimentin and phospho-specific Ets2T72 antibodies revealed a marked increase of P-Ets2T72 

in stromal fibroblasts and interestingly, in the adjacent epithelial ductwork as well (Fig. 
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3c, 3d).  Loss of Pten in stromal fibroblasts resulted in the induction of a number of genes 

involved in ECM remodeling and macrophage recruitment (Supplementary Fig. 6c), two 

of which, Mmp9 and Ccl3, are known to be direct transcriptional targets of Ets228, 29 (Fig. 

4e).  The increase of Mmp9 expression in Pten stromal-deleted ErbB2-tumors appears to 

be of pathological relevance since in situ zymography, a functional assay enabling real-

time monitoring of a fluorescent protease cleavage substrate30, showed robust activation 

of Mmp9 in these tumor samples (Fig. 4f).  Chromatin immunoprecipitation (ChIP) 

assays showed an increase in the loading of Ets2 onto the Mmp9 and Ccl3 promoters in 

Pten-deleted mammary fibroblasts (Fig. 4g), suggesting a direct role for Ets2 in the 

transcriptional regulation of these two target genes.    Together, these data illustrate the 

extensive molecular reprogramming that takes place in the tumor microenvironment and 

in tumor cells, as a consequence of ablating Pten in stromal fibroblasts. 

 

Stromal Ets2 promotes mammary tumorigenesis 

To determine whether Ets2 promotes a microenvironment conducive to tumor growth we 

analyzed the consequences of ablating a conditional allele of Ets2 (Ets2loxP)31 in 

mammary stromal fibroblasts of a well-characterized mouse model of breast cancer, 

MMTV-PyMT (PyMT)32.  The PyMT oncogene initiates the rapid onset and progression of 

mammary tumors and thus represents an ideal model for evaluating any potential delay 

that loss of Ets2 might have on tumorigenesis.  The complete or near-complete ablation 

of Ets2 in stromal fibroblasts was facilitated by using Fsp-cre mice carrying conventional 

and conditional knockout alleles of Ets2 (DNA-binding domain-Ets2db/LoxP)33.  PCR-

based analysis of genomic DNA showed efficient deletion of Ets2loxP in mammary 
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fibroblasts of Fsp-cre;Ets2db/loxP mice (Fig. 5a) and Western blot and IF assays confirmed 

the loss of its protein product (Fig. 5b and 5c, respectively).  Importantly, ablation of Ets2 

in these cells had no detectable physiological consequence on the development of 

mammary glands, either during puberty or pregnancy (MCO, unpublished observations).  

The evaluation of PyMT;Fsp-cre;Ets2db/loxP and control PyMT;Ets2db/loxP mice over a 

period of three months showed that ablation of Ets2 in mammary fibroblasts significantly 

reduced tumorigenesis (Fig. 5d).  PyMT;Fsp-cre;Ets2db/loxP mice exhibited decreased 

tumor load (Fig. 5e) and slower progression to adenoma and early carcinoma than 

PyMT;Ets2db/loxP control mice (Fig. 5f).  Analysis of Mmp9 expression by quantitative 

RT-PCR showed low levels of its mRNA in normal fibroblasts (with or without Ets2) and 

high levels in tumor-associated fibroblasts containing Ets2, which were reduced back to 

the normal low levels upon in Ets2-deleted tumor fibroblasts (Fig. 6a).  In situ 

zymography assays measured a 4-5 fold decrease in Mmp9 activity in tumor sections 

from PyMT;Fsp-cre;Ets2db/loxP mice relative to PyMT;Ets2db/loxP controls (Fig. 6d and 

data not shown).  Because Mmp9 activity is known to mediate the release of matrix-

bound VEGF-A to its active isoforms, including VEGF164
34, we visualized the spatial 

distribution of VEGF164 and Mmp9 by immunofluorescent staining in consecutive frozen 

tumor sections.  These assays showed that the accumulation of VEGF164, which was 

particularly acute within collagen1A-rich stromal locations overlapping Mmp9 activity, 

was significantly decreased in stromal-deleted Ets2 tumors (Fig. 6b, 6d).  Given that 

VEGF164 is a specific ligand for VEGF Receptor 2 (VEGFR2; FLK-1; KDR), one of the 

most potent mediators of VEGF-induced endothelial signaling and angiogenesis35, we 

also evaluated  VEGFR2 status by immuno-staining tumor sections with antibodies 
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specific for CD31 (endothelial-specific marker) and the phospho-activated form of the 

murine VEGF receptor (VEGFR2Y1173)36.  This analysis revealed a four-fold decrease in 

the number of CD31/ VEGFR2Y1173 double-positive cells in Ets2-deleted versus non-

deleted tumor samples (Fig. 6c, 6e).  Together, we conclude that loss of Ets2 in stromal 

fibroblasts resulted in decreased Mmp9 expression and activity in the tumor ECM and 

reduced VEGFR2Y1173-activation in the tumor vasculature. 

 

Loss of Ets2 diminishes tumor formation in Pten stromal-deleted mammary glands 

Given the apparent role of stromal Ets2 in promoting PyMT-driven mammary tumors, we 

entertained the hypothesis that Ets2 may be contributing to the remodeling of the tumor 

microenvironment caused by stromal Pten deletion that led to enhanced tumorigenesis in 

ErbB2;Fsp-cre;PtenloxP/loxP mice.  To directly test this possibility, we compared tumor 

incidence and burden in PtenloxP/loxP, Fsp-cre;PtenloxP/loxP and Fsp-

cre;PtenloxP/loxPEts2db/loxP mammary glands that were orthotopically injected with an 

established ErbB2-initiated mammary tumor cell line (NT 2.5)37.  This orthotopic model 

recapitulated the consequences of deleting Pten in the mammary stroma that were 

observed in the genetically engineered ErbB2-mouse model described earlier in this 

study.  Indeed, the incidence of tumors at injected sites and the tumor load in Fsp-

cre;PtenloxP/loxP females was markedly higher than in control PtenloxP/loxP females (Fig. 7a, 

7b).  Importantly, both the tumor incidence and tumor loads were significantly reduced in 

mammary glands doubly deleted for stromal Pten and Ets2 (Fsp-

cre;PtenloxP/loxPEts2db/loxP).  Evaluation of tumor sections revealed decreased number of 

macrophages and recruitment of new vasculature in these doubly-deleted mammary 
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glands (Fig. 7d, 7e).  Loss of Pten and Ets2, however, failed to fully reduce the tumor 

load and the excessive collagen deposition to control levels (compare PtenloxP/loxP and 

Fsp-cre;PtenloxP/loxP;Ets2db/loxP in Fig. 7b, 7d and 7e), suggesting that additional effectors 

must also contribute towards Pten’s tumor suppressor functions.  From these data, we 

conclude that Ets2 is a major component of the Pten tumor suppressive axis that acts in 

the stromal fibroblast compartment of mammary glands.   

 

Mouse fibroblast Pten expression signature distinguishes normal from tumor 

stroma in breast cancer patients. 

To determine the relevance of these findings in mice to human breast cancer, we 

compared the stromal fibroblast Pten-expression signature identified in Fsp-

cre;PtenloxP/loxP mice to the expression signatures derived from laser-captured tumor 

stroma (49 samples) and adjacent normal stroma (52 samples) in breast cancer patients38.  

Details of sample processing and data analysis are available in the Supplementary 

Methods section.  First, we identified 137 human orthologs from the 150 differentially 

expressed mouse genes detected by the Affymetrix oligo-arrays (Supplementary Fig. 6).  

Of these 137 orthologs, 129 genes were represented in the expression platform used38 

(Agilent) for the analysis of human patient stroma samples (McGill Cancer Center’s 

Breast Stroma Microarray data GSE9014 and GSE4823).  Only 71 of these 129 genes 

had highly variable gene expression across all human stromal samples (a variance cutoff 

of >0.5).  The heat map generated for the human stroma dataset showed that this 71 gene-

subset derived form the mouse Pten-signature was sufficient to distinguish normal from 

tumor stroma in all patients (Fig. 8a; p=3.9e-15 as determined by Wilcoxon’s test).  
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Interestingly, 12 of the 137 human orthologs identified by the Pten-signature (Fig. 8a, 

highlighted in red) were previously shown to be differentially expressed in the tumor 

stroma of breast cancer patients and to be associated with recurrence38.  This overlap 

between differentially expressed genes in mouse (71 genes) and human stroma (163 

genes) is highly significant (p = 2.5e-8, Fisher’s Exact Analysis).  These analyses suggest 

that the fibroblast Pten-expression signature identified by our stroma mouse model 

represents a significant subset of the total gene signature expressed in the stroma of 

human breast cancer.  We interpret these results to mean that a portion of the 

transcriptome regulated by Pten in mammary stromal fibroblasts is dysregulated in the 

tumor stroma of breast cancer patients.  

 

DISCUSSION 

Histopathology and molecular studies suggest that malignant tumors consist of a complex 

cellular system that is dependent on reciprocal signaling between tumor cells and the 

adjacent stroma.  However, the signaling pathways that mediate the communication 

between the various cell types in the tumor remain virtually unknown.  We recently 

developed a mesenchymal-specific cre mouse15 and used it here to examine the 

consequences of inactivating Pten in mammary stromal fibroblasts.  Using this system we 

show, for the first time, that Pten in stromal fibroblasts has a critical role in the 

suppression of epithelial mammary tumors that is, in part, mediated through an Ets2-

regulated transcriptional program. 

The tumor suppressor functions of PTEN have been extensively studied in the 

tumor cell39-41.  We show here that genetic ablation of Pten in mammary stromal 
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fibroblasts of mice alters the expression profile of these cells to increase ECM, 

chemokine and cytokine production in the tumor microenvironment.  As a result, Pten 

stromal-deleted tumors exhibit high levels of collagen, macrophage recruitment and 

vascular networks, which together favor the initiation and progression of mammary 

epithelial tumors.  Remarkably, side-by-side evaluation of histopathology by independent 

pathologists could not distinguish tumors between Pten stromal-deleted mice and human 

breast cancer patients, highlighting the importance of modeling stromal cell 

compartments of the tumor microenvironment.  The mechanism by which Pten in the 

stroma exerts its tumor suppressor role likely involves the control of multiple signaling 

pathways, including components of the Ras, Akt and JNK networks, which together 

culminate in the regulation of Ets2 transcriptional activity.  The fact that loss of Ets2 in 

mammary stromal fibroblasts diminished the oncogenic consequences of deleting Pten in 

these cells underscores the importance of the stromal Pten-Ets2 axis in stromal fibroblasts 

during tumor suppression.  These observations are consistent with previous work from 

Oshima and colleagues that showed a critical cell non-autonomous role for Ets2 in the 

growth of mammary tumors in mice42 and with the identification of Ets2 activation as a 

key event associated with breast cancer in human patients having poor prognosis43-45.  

The relevance of the mouse Pten-Ets2 tumor suppression axis identified here to human 

breast cancer is highlighted by the high correspondence between the mouse and human 

stromal expression signatures.  The observation that the dire consequences of targeting 

this Ets2-driven stromal program are tumor-specific, sparing normal mammary 

development, emphasizes the potential utility of stromal-specific strategies for 

therapeutic intervention in human breast cancer. 
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In summary, this work identifies Pten-Ets2 as a key regulatory axis in stromal 

fibroblasts that suppresses mammary epithelial tumors by profoundly attenuating some of 

the most malignant characteristics of the tumor microenvironment.  This novel function 

of Pten may be relevant in the suppression of epithelial tumors of other organs, but may 

also extend beyond cancer, to conditions where the microenvironment may impact 

disease manifestation, such as in autoimmune syndromes46, lung fibrosis47 and 

neurodegeneration48.  Interestingly, the stromal Pten expression signature identified here 

includes genes that have been causally linked to ECM deposition and inflammation in 

rheumatoid arthritis, lung fibrosis and neurodegeneration (Listed in Supplementary 

Table1 and Table 2).  These data offers a molecular basis for how altered Pten signaling 

in the tumor stroma may elicit broad responses in a variety of cells in the tumor 

microenvironment that contribute to disease manifestation.  



 16

ACKNOWLEDGEMENTS 

The authors thank Maysoon Rawahneh and Julie Moffitt for excellent histotechnical 

assistance, Karl Kornacker for bioinformatics assistance, the OSUCCC Microarray, 

Nucleic Acids, Trangenics and Flow Cytometry Shared Facilities for technical assistance.  

MMTV-rtTA and MMTV-ErbB2 mice were kindly provided by Dr. Chodosh and Dr. 

Muller, respectively.  This work was funded by the National Institutes of Health to G.L. 

(R01CA85619, R01HD47470, P01CA097189) and to M.C.O. (P01CA097189), to F.L. 

by a Department of Defense Pre-doctoral Fellowship.  G.L. is the recipient of the Pew 

Charitable Trusts Scholar Award and the Leukemia and Lymphoma Society Scholar 

Award. MP holds the Diane and Sal Guerrera Chair in Cancer Genetics at McGill 

University. Funding for this research provided by Terry Fox New Frontiers Group Grant 

to MP. Natural Science and Engineering Research Council of Canada Discovery Grants 

Program grant to M.H.; a US Department of Defense Breast Cancer Predoctoral 

Traineeship Award to F.P.; M.P. holds the Diane and Sal Guerrera Chair in Cancer 

Genetics at McGill University. Sean Cory and Indrani Vasudeva Murthy as they ran 

many of the analyses for us.  



 17

 

METHODS SUMMARY 
 
Transgenic mice.  Generation of Fsp-cre mice has been described15.   PtenloxP mice were 

created following the strategy described in Supplementary Fig. S1.  Ets2loxP mice were 

generated by standard techniques31.  Animals were maintained and euthanized following 

institutional guidelines.  Tenth generation congenic (N10) FVB/N animals were used for 

transplantation and orthotopic injection studies.  

Tissue processing, histology.  All tissues were either fixed with 4% PFA and embedded 

in OCT, or fixed with formalin and embedded in paraffin.  Frozen sections were used for 

X-gal staining as described15.  To perform gelatinase in situ zymography 10µm frozen 

sections were incubated with 40 ug/ml DQ-gelatin (Molecular Probles) for 10hours at 

room temperature as described by Mook et al49.  

Isolation of primary mammary fibroblasts.  Primary mammary fibroblasts were 

purified following the protocol published previously with minor modifications50.  

Mammary glands were dissected from 8 week-old female mice, minced and digested with 

collagenase (0.15% Collagenase I, 160 U/ml Hyaluonidase, 1 ug/ml hydrocortisone and 

10 ug/ml insulin with penicillin and streptomycin) in a 5% CO2 incubator overnight at 

37˚C. Collagenase was neutralized with 10% FBS-DMEM medium. Digested tissue was 

resuspended in medium and subjected to gravity for 12-15 min.  Pellets were washed 

three times to collect epithelial organoids, and supernatants were subjected four more 

times to gravity and then cultured. 



 18

RNA and microarray analysis. RNA was harvested with Trizol according to 

manufacturer’s instructions (Invitrogen).  RNA quality and concentration were assessed 

by Bioanalyzer and Nanodrop RNA 6000 nano-assay. RNA samples were hybridized to 

Affymetrix GeneChip Mouse genome 430 2.0 platform at the Microarray Shared 

Resource Facility, Ohio State University Comprehensive Cancer Center.  
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FIGURE LEGENDS 

Figure 1  Stromal fibroblast-specific deletion of Pten. 

(a) Fsp-cre expression in the mammary gland.  Whole mount X-gal stained mammary 

glands from Fsp-cre;Rosa+/loxP and Rosa+/loxP (top inset) mice. Higher magnification 

micrograph of whole mount (bottom left) and cross section (bottom right) of Fsp-

cre;Rosa+/loxP X-gal stained mammary gland; lu, lumen. 

(b) Pten deletion in the Fsp-cre;PtenloxP/loxP mice by PCR-based assays.  DNA extracted 

from tail biopsies (lanes 1-4) or purified primary mammary stromal fibroblasts (lanes 5-

7) with the indicated genotypes were used as template for PCR-based measurement of 

Pten deletion using primers described in Methods.  

(c) Ablation of Pten protein in mammary stromal fibroblasts. Representative Western blot 

analysis of mammary fibroblast lysates derived from four different 8 week-old female 

mice with the indicated genotypes.  

(d) Pten inactivation is restricted to mammary stromal fibroblasts.  Paraffin sections from 

PtenloxP/loxP and Fsp-cre;PtenloxP/loxP mammary glands were processed for IHC using a 

Pten-specific antibody.  Lower panels represent higher magnification of boxed areas in 

upper panels. lu, lumen; epi, epithelial compartment; str, stromal compartment; red dotted 

line indicates the border between the epithelial and stromal compartments.   
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Figure 2  Loss of Pten in mammary stromal fibroblasts accelerates tumorigenesis. 

(a) Tumors derived from ErbB2;PtenloxP/loxP and ErbB2;Fsp-cre;PtenloxP/loxP mammary 

glands, 26 weeks post-transplantation. 

(b) Percentage of mammary glands with the indicated genotypes that developed tumors 

by 16 weeks post-transplantation.  Tumorigenicity was determined based on palpation or 

histological presentation of adenoma/carcinoma at each implantation site and statistically 

analyzed using Fisher’s Exact test.  

(c) Total tumor burden in mammary glands with the indicated genotypes at 26 weeks 

post-transplantation.  A mixed ANOVA model was used to compare the groups. A 

random effect for the mouse within donor effect was used to account for the correlations.   

(d) H&E stained sections of mammary glands with the indicated genotypes that were 

harvested just before transplantation (0 weeks) and at the indicated times post-

transplantation.  

(e) Tumors derived from MYC;PtenloxP/loxP and MYC;Fsp-cre;PtenloxP/loxP mammary 

glands, 10 weeks post-transplantation. 

(f) Percentage of mammary glands with the indicated genotypes that developed tumors by 

10 weeks post-transplantation.  Tumorigenicity was determined based on histological 

presentation of adenoma/carcinoma at each implantation site.  Note that no tumors 

developed in MYC;PtenloxP/loxP mammary glands and hence no statistical analysis was 

performed.  

(g) Total tumor burden in mammary glands with the indicated genotypes at 26 weeks 

post-transplantation.  A mixed ANOVA model was used to compare the groups. A 

random effect for the mouse within donor effect was used to account for the correlations.   
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(h) Paraffin sections of mammary glands with the indicated genotypes were harvested at 

10 weeks post-transplantation and stained with H&E.  Note the range of tumor stage 

observed in MYC;Fsp-cre;PtenloxP/loxP glands. 
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Figure 3  Characterization of ECM deposition and immune cell infiltration.   

(a) Schematic representation of the biological processes affected by differentially 

expressed genes (<4 fold).   

(b) Tissue sections from 8 week-old Pten loxP/loxP and Fsp-cre;Pten loxP/loxP mammary 

glands were stained with H&E, Masson’s Trichrome and Collagen I-specific antibodies, 

respectively.  

(c) Quantification of collagen deposition (trichrome-positive area) in mammary glands 

with the indicated genotypes.  Trichrome-stained sections were imaged using an Aperio 

Scanscope CS whole-slide scanner.  Areas of skin and muscle, which also stain positive, 

were manually encircled and excluded from the analysis.  Values shown represent the 

mean with standard deviation; Wilcoxon Rank Sum test was used for the comparison 

between groups.   

(d) Sections from mammary glands with the indicated genotypes were stained with the 

macrophage-specific marker F4/80. 

(e) Quantification of stromal cells stained positive for the macrophage-specific marker 

F4/80 in mammary glands with the indicated genotypes. Values shown represent the 

mean with standard deviation; Wilcoxon Rank Sum test was used for the comparison 

between groups.  

(f) Western blot analysis of whole-cell lysates derived from stromal fibroblasts with the 

indicated genotypes and antibodies; blots were probed with anti-tubulin as a loading 

control.   

(g) Sections from mammary glands with the indicated genotypes stained with the 

phospho-Akt473/308, phospho-JNK183/185, and phospho-Erk1/2 specific antibodies. 
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Figure 4  Loss of Pten in stromal fibroblasts leads to activation of Ets2. 

(a) qRT-PCR analysis of Ets2 expression in PtenloxP/loxP and Fsp-cre;PtenloxP/loxP stromal 

fibroblasts.  Total RNA was isolated from fibroblasts with the indicated genotypes and 

analyzed by real-time RT-PCR assays. Values shown represent the average with standard 

deviation; statistical analysis used the Student t-test. 

(b) Western blot analysis of whole-cell lysates derived from fibroblasts with the indicated 

genotypes. 

(c) Quantification of (Fig 4d) mammary epithelial and stromal cells that stain positive for 

nuclear phospho-Ets2T72 in PtenloxP/loxP and Fsp-cre;PtenloxP/loxP animals . Values shown 

represent the mean with standard deviation; Wilcoxon Rank Sum test was used for the 

statistical comparison between groups. 

(d) Mammary tissue sections from PtenloxP/loxP and Fsp-cre;PtenloxP/loxP animals were 

processed for IF using a phospho-Ets2T72-specific antibody. Note that loss of Pten in the 

mammary stroma increased Ets2 phosphorylation in both the stromal and epithelial 

compartments. Dotted-white line indicates the stromal-epithelial boundary. 

(e) qRT-PCR analysis of Mmp9 expression in PtenloxP/loxP and Fsp-cre;PtenloxP/loxP 

stromal fibroblasts.  Total RNA was isolated from fibroblasts with the indicated 

genotypes and analyzed by real-time RT-PCR assays. Values shown represent the 

average with standard deviation; statistical analysis used the Student t-test.  Note that 

Mmp9 expression is increased in Pten-deleted fibroblasts and further increased in Pten-

deleted fibroblasts derived from mammary glands expressing ErbB2 in the epithelial 

compartment. 
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(f) In situ zymogen IF assays in 26 week post-transplanted ErbB2;PtenloxP/loxP and 

ErbB2;Fsp-cre;PtenloxP/loxP mammary glands (bottom panels). Top panels are H&E 

staining of consecutive sections from the same mammary gland in bottom panels. 

(g) ChIP assays using Ets2-specific or IgG control antibodies in stromal fibroblasts with 

the indicated genotypes. Values shown represent the average with standard deviation; 

statistical analysis used the Student t-test. 
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Figure 5  Ets2 ablation in stroma fibroblasts restricts mammary tumorigenesis. 

(a) Ets2 genotyping and (b) Western blot of fibroblasts purified from mammary glands of 

PyMT;Ets2db//loxP (lane 1) or PyMT;Fsp-Cre;Ets2db/loxP mice (lane2).  

(c) Immunofluorescence staining of cultured mammary fibroblasts from 9 week-old mice 

with Vimentin (green) and p-Ets2(T72) (red) antibodies, and counterstained with DAPI. 

Scale bar is 50μm. 

(d) Representative images of gross tumors dissected four weeks post tumor initiation 

from PyMT;Ets2db//loxP (left) or PyMT;Fsp-cre;Ets2db/loxP (right) mice. 

(e) Comparison of total mammary tumor volume of PyMT;Ets2db//loxP (n = 20), 

PyMT;Fsp-cre;Ets2db/loxP (n = 21) mice; significance based on Wilcoxon Rank Sum test. 

(f) H&E staining of tumors harvested from PyMT;Ets2db//loxP or PyMT;Fsp-cre;Ets2db/loxP 

mice; Scale bar is 500μm for top panel and 50μm for bottom panel. 
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Figure 6  Ets2 inactivation in tumor fibroblasts impairs vascular endothelial 

signaling and reduces tumor angiogenesis 

(a) Quantitative RT-PCR analysis of Mmp9 mRNA expression in primary mammary 

fibroblasts of indicated genotypes (* P<0.01, n = 3, Students t-test). 

(b) Quantification of VEGF164 of the IF staining (Fig 6d) in tumor stroma area in tumors 

collected one week post tumor initiation( * P<0.01, n = 3, Students T-test). Error bars 

represent s.d. 

(c) Quantification of tumor endothelial cells (Fig 6e) co-expressing CD31 and phospho-

VEGFR2 (* P<0.01, n = 3, Student T-test). 

(d) Consecutive sections stained for (from left to right): Trichrome, Mmp9 gelatinase 

activity and VEGF164, and counterstained with DAPI from PyMT;Ets2db/loxP and 

PyMT;Fsp-cre;Ets2db/loxP mammary tumors harvested one week post tumor initiation. 

Scale bars are 50μm. 

(e) Tumor vascular endothelial cells visualized by IF double staining with CD31 (green) 

and p-VEGFR2(Tyr1173) (red), and counterstained with DAPI in mammary tumors 

collected one week post tumor initiation PyMT;Ets2db/loxP and PyMT;Fsp-cre;Ets2db/loxP 

mice. Scale bars are 50μm. 
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Figure 7  Loss of Ets2 in stromal fibroblasts diminishes tumor growth in stromal 

Pten-deleted mammary glands. 

(a) Orthotopic injection of the ErbB2-expressing tumor cell line NT 2.5 into 

PtenloxP/loxP;Ets2db/loxP;PtenloxP/loxP and Fsp-cre;PtenloxP/loxP and Fsp-cre;Ets2db/loxP; 

PtenloxP/loxP mammary glands. Mammary glands from at one month post-injection were 

sectioned and stained with H&E. 

(b) The PtenloxP/loxP;Ets2db/loxP (n=10) and PtenloxP/loxP (n=10) control groups were 

combined (+(*), n=20) after it was determined there was no statistical difference in the 

tumor incidence/load between these two control groups.  Values shown represent the 

mean with standard deviation; Wilcoxon Rank Sum test was used for the comparison 

between groups. 

(c) Sections from mammary glands with the indicated genotypes stained with the 

macrophage-specific marker F4/80.  Frozen sections from 8 week-old mammary tissue 

with the indicated genotypes stained with the endothelial-specific antibody, CD31, and 

H&E (consecutive section).  Note that loss of Pten in the mammary stroma resulted in a 

disruption of the normal vascular architecture. 

(d) Quantification of stromal cells stained positive for the macrophage-specific marker 

F4/80 in mammary glands with the indicated genotypes. Values shown represent the 

mean with standard deviation; Wilcoxon Rank Sum test was used for the comparison 

between groups.   

(e) Quantification of collagen deposition (trichrome-positive area) in mammary glands 

with the indicated genotypes.  Trichrome-stained sections were imaged using an Aperio 

Scanscope CS whole-slide scanner.  Areas of skin and muscle, which also stain positive, 
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were manually encircled and excluded from the analysis.  Values shown represent the 

mean with standard deviation; Wilcoxon Rank Sum test was used for the comparison 

between groups.   
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Figure 8  Analysis of the PTEN null mouse fibroblast microarray data. 

(a) Heat map comparing 71 human orthologs from the PTEN null fibroblast list, both up- 

and down-regulated (y-axis), with the genes that are differentially expressed in human 

tumor stroma from the McGill study.  Red and green regions indicate up-regulate and 

down-regulated genes, respectively, between the normal and tumor stroma sets from 

human patients. 

(b) Gene expression changes assessed by qRT-PCR to confirm microarray results for 

representative genes that are differentially expressed between fibroblasts with and 

without Pten.  Gene expression was analyzed in independent experiments and the 

averages between duplicates are shown with standard deviation. 

(c) Venn diagram depicting the overlap between the mouse Pten-deleted fibroblast and 

human stroma microarray data.  This overlap is highly significant (p-value=2.5e-8; 

Fisher’s Exact Analysis). 
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SUPPLEMENTARY METHODS 

 

Transgenic mice.  Animals were house according to federal and OSU ULAR 

regulations.  

Fsp-cre. The generation of the Fsp-cre mouse line has been previously described1.  

Ets2loxP. The Ets2 conditional transgenic mouse line was generated such that the Ets2 

pointed domain is “floxed”2. The pointed domain is encoded by exons 3-5 and important 

for the protein-protein interaction and signal transduction.  

Ets2db. Ets2db mouse was a gift from Dr. Oshima R.G. (Burnham Institute for Medical 

Research, La Jolla, California).  

PtenloxP. LoxP sites were introduced into two HpaI sites within introns 3 and 5 of the Pten 

gene, respectively, to flank exons 4 and 5. Exon 5 encodes the lipid phosphatase domain. 

Tissue-specific expression of cre will excise exons 4 and 5, generating a loss-of-function 

PtenΔ allele (Supplementary Figure 1; G.W. and M.C.O. unpublished data.). A list of 

PCR primers can be found on Supplementary Table 3.  

 

Mammary tissue transplantation.  Transplant procedure was based on a previously 

method3 The day prior to surgery, recipient mice were anesthetized with Isofluorane 

(Abbott Laboratories) and a 25mm x 25mm square area along the scapular region was 

shaved.  At the time of surgery, inguinal and groin mammary tissue (5x5mm in size; 

minus lymph node) was removed from eight to nine-week-old donor females and placed 

subcutaneously into the scapular region of wild-type hosts through two 5-10mm incisions 

on the left and right side under aseptic conditions. The small incisions were closed using 
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a 9mm wound clip. Animals were monitored twice a week until tumor onset. Mice were 

sacrificed either at specific time points, when the tumor was about 2 cm in size or it 

presented a health problem to the animal such as exterior ulceration at the site of the 

tumor. The myc tumor model is an inducible system4, but donor mice were never given 

doxycycline. Instead, recipient mice were started on chow containing doxycycline 

(1g/kg) prior to the transplant procedure, and then continued until the end of the 10 week 

study.  

Orthotopic mammary gland injection. The neu-expressing mouse mammary carcinoma 

cell line NT2.5 was provided by Dr. Kaumaya (Ohio State University, Columbus, OH) 

and was maintained as described5. Eight week old female mice of each genotype were 

anesthetized and injected with 5x105 NT2.5 cells at both inguinal mammary glands. 

Tumor initiation was monitored by palpating twice a week. All the mice were euthanized 

three weeks after injection. Tumor volume was calculated by formula V=1/2 x length x 

(width)2.  

Tissue processing and X-gal staining. Large individual tumors (typically ~1 to 2cm) or 

the remainder of transplanted tissues were removed, divided and either fixed in 4% PFA 

for 24-48hrs or embedded directly in OCT (Sakura, Torrance, CA). Fixed tissue samples 

were embedded in paraffin and cut into 5 m sections for H&E, IHC or IF staining.  For 

each sample collected, two sets of sections were obtained at 25 m intervals for analysis.  

Corresponding OCT embedded tissue was sectioned (7 m) in a similar manner for X-gal 

or IF staining.  For X-gal staining, frozen tissue sections were dried 15 min at RT before 

fixing in a glutaraldehyde solution (0.2% glutaraldehyde, 1.25mM EGTA, pH 7.3 and 
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2mM magnesium chloride in 1x PBS) for 30 min.  The sections were washed with LacZ 

wash buffer (2mM magnesium chloride, 0.01% sodium deoxycholate, 0.02% IGEPAL 

CA-630 (Sigma) in PBS) for 5 min three times and then stained in LacZ staining solution 

(4 mM potassium ferricyanide, 4mM potassium ferrocyanide, 1mg/mL X-gal in LacZ 

wash buffer) protected from light at 37oC overnight (~18 hrs).  Stained sections were 

washed in PBS for 5 min three times and then rinsed with water for 2 min before counter-

staining with nuclear fast red (NFR). . 

 

Immunohistochemistry and immunofluorescence. IHC or IF was performed using 

paraffin sections with the following antibodies: Pten (1:100, Cell signaling), Collagen I 

(1:100, Abcam- 30 min), F4/80 (1:50, Caltag), P-Akt(S473, 1:50, Cell Signaling), P-

JNK(1:50, Cell Signaling). P-Erk1/2(1:100, Cell Signaling), P-Ets2(T72, 1:125, M.C.O 

lab), Cytokeratin 8/18 (1:300; Research Diagnostics- 30 min), E-cadherin (1:700, BD-

Pharmingen- 30 min), mouse α-SMA (1:200, Sigma-30 min) and Collagen IV(1:100, 

Chemicon- 30 min). In general, paraffin sections were deparaffinized and the antigen 

retrieval accomplished by incubation in antigen retrieval solution (DAKO) at >95oC (30 

min). IHC. Staining was developed using the biotin/avidin/horseradish peroxidase 

system from Vector Laboratories according to manufacturer’s instructions.  All IHC 

slides were counterstained with hematoxylin and images obtained using an Eclipse 50i 

microscope (Nikon) and an Axiocam HRc camera (Zeiss). IF. Staining was developed 

using secondary antibodies conjugated to AlexaFluor dyes following standard protocol 

(Invitrogen; Molecular Probes). For Pten IF the signal was amplifies using a biotinylated 

secondary antibody and Texas Red conjugated to streptavidin. All IF sections were 
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counterstained with DAPI and images obtained using an Axioscope 40 microscope 

(Zeiss) equipped with an Axiocam HRc camera (Zeiss).  Frozen sections of mammary 

glands for IF were fixed at 4oC in either 4% paraformaldehyde in PBS or acetone (CD31 

and Vimentin). Samples were treated with phospho-Ets2 (T72) (1:125; M.C.O. lab), 

Vimentin (1:50; Santa Cruz Biotech), VEGF164 (1:100, R&D Systems), phospho-

VEGFR2Y1175 (1:100,Cell Signaling) and CD31 (1:50, BD Biosciences) antibodies. 

Fluorescent images were obtained as above. CD31 and phospho-VEGFR2Y1175 images 

were quantified with software written by Dr. Huang K.  VEGF164 images were quantified 

with MetaImaging Series 6.1 software.  IHC cells were counted manually and reported as 

a percentage of positive cells from the total cell population. 

 

Gelatinase in situ zymography.  This was performed as described, with minor 

modification6.  Briefly, frozen sections (10um) were quickly fixed with cold acetone, 

rehydrated with PBS and then incubated with 40 ug/ml DQ-gelatin (Molecular Probes) in 

reaction buffer (50mM Tris-HCl, 150mM NaCl, 5mM CaCl2 and 0.2mM NaN3, PH7.6) 

for 10hrs. The reaction is quenched with 10mM EDTA-PBS wash. Nuclei are 

counterstained with DAPI. A consecutive slide is stained with H&E to localize the 

MMP9 activity. 

 

Western blot. One to two million cells were lysed with RIPA buffer (50mM PH7.4 Tris-

HCl, 150mM NaCl, 1mM EDTA,1% NP-40, 1% Sodium Deoxycholate and 0.1% SDS) 

containing protease and phosphatase inhibitors (Roche). Primary antibodies for PTEN, 

Akt, P-Akt, P-JNK, P-Erk, Erk and Ets2 were all used at 1:1000 dilution, while tubulin 
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was used at 1:5000 dilution. Washed membranes were blotted with either HRP-

conjugated anti mouse IgG or anti rabbit IgG antibodies and developed with ECL.  

 

RNA isolation and microarray analysis. Cells were harvested with Trizol and RNA 

was extracted according to manufacturer’s instructions (Invitrogen).  Total RNA quality 

and concentration were assessed by Bioanalyzer and Nanodrop RNA 6000 nano assay. 

RNA was hybridized to Affymetrix GeneChip, Mouse genome 430 2.0 platform at the 

Microarray Shared Resource Facility, Ohio State University Comprehensive Cancer 

Center. The data were analyzed using WEDGE++ expression analysis7. Heat map 

representation (Supplementary Figure 6) was performed using the TIGR Multiexperiment 

Viewer program MeV v4.1.  

Quantitative realtime PCR.  Quantitative gene expression was performed using 50 ng 

cDNA per reaction. Taqman Roche Universal Probe Library system probe and primers 

(Roche) following manufacturer’s instructions. Reactions were carried out on the Icycler 

iQ Real-Time machine (Bio-Rad).  

 

Chromatin Immunoprecipitation and qPCR. Chromatin immunoprecipitation (ChIP) 

assays were performed as described by Hu et al.8. Primary fibroblasts were cross-linked 

with 1% formaldehyde and soluble chromatin was prepared with sonication to an average 

DNA length of 200–1000bp. Sheared soluble chromatin was pre-cleared with tRNA-

blocked Protein G-agarose, and 10% of the pre-cleared chromatin was set aside as input 

control. Immunoprecipitation was carried out with 5µg of Ets2 antibody or rabbit IgG 

http://www.tm4.org/getprogram.cgi?program=mev�
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overnight at 4 °C. Immune complexes were pulled down with Protein G-agarose, washed, 

and eluted with elution buffer (0.1 M NaHCO3, 1% SDS), and de-crosslinked with 

200mM NaCl at 65 °C overnight with 20µg of RNase A (Sigma). DNA was purified with 

the Qiagen PCR purification kit following proteinase K treatment according to the 

manufacturer’s instructions. Samples were analyzed by real-time PCR as indicated above. 

The threshold for the promoter being studied was adjusted by that of input values and 

represented as relative abundance. All qRT-PCR reactions were analyzed by melt curve 

analysis and agarose gels to confirm the specificity of the reaction. 

 

Generating the Human Stroma Heat map with the fibroblasts - PTEN null genes. 

Analysis of the PTEN null mouse microarray data using WEDGE++6 led to the 

identification of 195 differentially expressed probe sets matching to 150 unique mouse 

genes. A search for human orthologs using Ensembl and MGI databases yielded in a list 

of 137 genes. These genes were queried against the McGill Cancer Center’s Breast 

Stroma Microarray data (GSE9014 and GSE4823). 129 of the 137 genes were 

represented on the Agilent Custom Array used in the McGill study. A heat map was 

generated for the human stroma dataset (52 normal stroma and 49 tumor stroma samples). 

To achieve better resolution on the heat map, and with the aim of identifying only those 

genes that had highly variable gene expression across all samples, a variance cutoff of 

>0.5 was used to generate a subset of 71 genes. The heat map (Figure 8a) shows the 

ability of these 71 genes to separate the normal and tumor stroma samples based solely 

on their gene expression profiles. This partitioning is highly significant (p-value=3.9e-
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15), as determined by Wilcoxon’s test on the average expression of PTEN null-signature 

in all samples.  

Interestingly, comparison of 137 human orthologs of the PTEN null list with the 163 

genes associated with recurrence in tumor stroma from the McGill study showed that 

there are 12 genes (highlighted in red; Fig 8a) present on both gene lists. This overlap is 

again highly significant (p-value=2.5e-8; Fisher’s Exact Analysis). 

 

Statistical Analysis 

Animal numbers and experiments are as indicated in the figures. Wilcoxon -rank test was 

used for most statistical analyses unless mentioned otherwise in the figure legend. 
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Supplementary Figures:  

Supplementary Figure 1: Scheme for the generation of Pten conditional mice.  

Three loxP sites were introduced into two Hpa1 restriction sites (H) within introns 3 and 

5 on the Pten construct, resulting in the loss of these restriction sites (HΔ).  Two of the 

loxP sites were associated with the insertion of a neo cassette, used as the selectable 

marker.  An EcoR V (RV) restriction digest was performed to generate the final construct 

for delivery into ES cells and integration into the genome via homologous recombination.  

Limited -cre expression resulted in the removal of the neo cassette with the remaining 

two loxP sites flanking Pten exon 4 and exon 5. Tissue specific expression of cre 

removes Pten exon 4 and exon 5 from the genome and results in loss of functional Pten 

expression. 

 

Supplementary Figure 2: Cellular location of Fsp-cre expression. 

(a) IHC staining for the epithelial markers Cytokeratin 8/18 (Ck8/18) was performed on 

paraffin sections from X-gal stained mammary tissue (8 week old mice).  The Ck 8/18 

expression did not overlap with the X-gal marked cre expression generated by Fsp-cre 

and the Rosa26loxP reporter. 

(b) Macrophage (F4/80) and endothelial cells (CD31) were isolate by flow cytometry, 

using the indicated cell marker, and epithelial and fibroblasts cells were isolated by cell 

culture from Fsp-cre;Ptenf/f;Rosa26loxP mice.  RNA was purified from each cell type and 

the expression of the conditional lacZ reporter gene was quantified by qRT-PCR.  
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Supplementary: Figure 3: Further characterization of Fsp-cre expression. 

(a) IHC analysis on non-X-gal stained slides was used to confirm the loss of conditional 

Pten protein expression due to Fsp-cre in mammary gland from 8-9week old mice.  

Lower panels are higher magnification images of the area enclosed by the rectangle in the 

upper panels. The dotted red line indicates the epithelial-stroma boundary, lu- Lumen, 

epi-epithelium and str-stroma.   

(b) Double IF was performed to confirm that loss of Pten expression had not occurred in 

the myoepithelium.  Paraffin sections of mammary tissue from 8-9week old mice were 

used and myoepithelial cells identified by α-smooth muscle actin (Sma) staining; lu- 

Lumen, epi-epithelium and str-stroma. 

 

Supplementary Figure 4: Fibroblast viability after transplant  

Mammary tissue from Fsp-cre;Rosa26loxP and Rosa26loxP donors were transplanted into 

wild-type hosts, removed at 16 weeks post-transplantation and assayed for -galatosidase 

activity using X-gal staining.  This confirmed that fibroblasts would be viable long 

enough to allow tumors to be formed using the MMTV-ErbB2 model, which has a 6-7 

month latency period.  
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Supplementary Figure 5: Verification of Fsp-cre expression in the 26 week post 

transplant tumors for the MMTV-ErbB2model.  

(a) Hematoxylin and eosin (H&E) and X-gal staining of frozen tissue sections shows 

increased tumor stroma in the MMTV-ErbB2;Fsp-cre;PtenloxP/loxP transplants. Tumors 

from the MMTV-ErbB2;PtenloxP/loxP  transplants have little to no significant stroma. Unit 

size is 2mm.  Lower β–gal panels are higher magnifications of the corresponding areas 

outline above by the black squares. 

(b) IHC staining for PTEN revealed that the PTEN protein was absent in the stroma (Str) 

and present in the tumor epithelium (T).  The boundary is marked with the dotted red 

line.  

 

Supplementary Figure 6: Global gene expression analysis in stromal Pten-deleted 

mammary fibroblasts.  Total RNA was isolated from primary mammary fibroblasts 

derived from 8 week-old mice and processed for microarray analysis using Affimetrix 

chips (see Methods). 

(a) Heat-map of upregulated genes in Pten-deleted stromal fibroblasts (<4-fold and p 

<10-6).  Genes are listed on the right in descending order magnitude-change. 

(b) Heat-map of downregulated genes in Pten-deleted stromal fibroblasts (<4-fold and p 

<10-6).  Genes are listed on the right in descending order magnitude-change. 

(c) Quantitative RT-PCR analysis of gene expression of representative genes involved in 

inflammation and wound healing.  Gene expression was analyzed in independent 

experiments and the average between duplicates of a representative sample are shown 

with standard deviation (d)  
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Supplementary Figure 7: Collagen expression in the Pten deleted mammary gland. 

(a) Masson’s Trichrome staining of mammary gland sections with the indicated 

genotypes at 16 weeks post-transplantation.   

(b) Epithelial cells produce collagen IV as part of the basement membrane, which 

surround the mammary ducts.  To determine if the observed collagen deposits are a result 

of the expansion of the basement membrane, IF staining was performed using a collagen 

IV antibody. There was no expansion of the basement membrane as the collagen IV 

staining (red) was only observed adjacent to the epithelia cells (green; E-cadherin).   

(c). To determine if these ECM deposits were due to an increase in pro-collagen I, protein 

lysates from primary fibroblasts isolated from 8 week old non-transplanted mammary 

glands were used for western analysis.  An increase in both the pro-collagen and its 

processed form was observed. 

 

Supplementary Figure 8: F4/80 expression in the MMTV-ErbB2model in the presence or 

absence of Pten. Sections from mammary glands transplants with the indicated genotypes 

were stained with the macrophage-specific marker F4/80. 
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Supplementary Table 1: Pten-responsive genes upregulated more than fourfold in the 
Fsp-cre;PtenloxP/loxP vs. PtenloxP/loxP primary mammary stromal cells 
 

Gene Symbol Gene name Difference Reference Role 

Ccl3 chemokine (C-C motif) ligand 3 77.5 1.          inflammation 

Irg1 immunoresponsive gene 1 51.6 2.          inflammation 

Il1b interleukin 1 beta 45 3.          inflammation 

Ccl12 chemokine (C-C motif) ligand 12 35.5 4.          wound fibrosis  

Clec4e C-type lectin domain family 4, member e 33.2 5.          inflammation 

Arg1 arginase 1, liver 20.9 6.          inflammation 

Fpr-rs2 formyl peptide receptor, related sequence 2 19.2 7.          inflammation 

Fcer1g Fc receptor, IgE, high affinity I, gamma polypeptide 18.3 8.          inflammation 

Marco macrophage receptor with collagenous structure 18 9.          inflammation 

Ccl6 chemokine (C-C motif) ligand 6 17.2 10.       inflammation 

Fpr1 formyl peptide receptor 1 15.9 11.       wound 

F13a1 coagulation factor XIII, A1 subunit 15.8 12.       wound 

Mmp12 matrix metallopeptidase 12 15.7 13.       wound fibrosis  

Lcp1 lymphocyte cytosolic protein 1 14.2 14.       inflammation 

Lyzs lysozyme 14.1 15.       inflammation 

S100a3 S100 calcium binding protein A3 13.6 16.       wound ECM 
Mpeg1 /// 
LOC671359 

macrophage expressed gene 1 /// similar to macrophage 
expressed gene 1 13.4 17.       inflammation 

Msr1 macrophage scavenger receptor 1 13.3 18.       inflammation 

Tyrobp TYRO protein tyrosine kinase binding protein 13.3 19.       Wound ECM 

Igfbp5 insulin-like growth factor binding protein 5 13.2 20.       wound fibrosis  

Clec4n C-type lectin domain family 4, member n 13 21.       inflammation 

Rac2 RAS-related C3 botulinum substrate 2 12.6 22.       inflammation 

Ccl4 chemokine (C-C motif) ligand 4 12 23.       inflammation 
Gp49a /// 
Lilrb4 

glycoprotein 49 A /// leukocyte immunoglobulin-like receptor, 
subfamily B, member 4 11.8 24.       inflammation 

Cybb cytochrome b-245, beta polypeptide 11.6 25.       inflammation 

Laptm5 lysosomal-associated protein transmembrane 5 11.4 26.       inflammation 

--- CDNA clone MGC:107680 IMAGE:6766535 11.4 N/A N/A 

Plek pleckstrin 11.3 27.       inflammation 

Fcgr2b Fc receptor, IgG, low affinity IIb 11.1 28.       wound 

Clec4d C-type lectin domain family 4, member d 10.7 29.       inflammation  

Cxcl4 chemokine (C-X-C motif) ligand 4 10.6 30.       inflammation 

Prg1 proteoglycan 1, secretory granule (Srgn) 10.4 31.       inflammation 

Sema4f 
sema domain, immunoglobulin domain (Ig), TM domain, and 
short cytoplasmic domain 10.3 32.       other (neuronal ) 

Pik3ap1 phosphoinositide-3-kinase adaptor protein 1 10 33.       inflammation 

Cd14 CD14 antigen 9.8 34.       inflammation 

Cd300lf CD300 antigen like family member F 9.7 35.       inflammation 

Lzp-s P lysozyme structural 9.3 36.       inflammation 

Itgb2 integrin beta 2   (CD18) 9.1 37.       wound healing 
Hal /// 
LOC638196 

histidine ammonia lyase /// similar to Histidine ammonia-lyase 
(Histidase) 8.9 38.       inflammation 

Cd48 CD48 antigen 8.6 39.       inflammation 

Ptprc protein tyrosine phosphatase, receptor type, C (CD45) 8.6 40.       inflammation 

--- --- 8.5 N/A N/A 



 45

Ctss cathepsin S 8.5 41.       inflammation 

Cd36 CD36 antigen 8.3 42.       inflammation 

Ctsc cathepsin C 8.1 43.       inflammation 

Adam8 a disintegrin and metallopeptidase domain 8 8 44.       inflammation 

Erbb3 
v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 
(avian) 8 45.       inflammation 

Ms4a6d membrane-spanning 4-domains, subfamily A, member 6D 7.9 46.       inflammation 

Phb Prohibitin 7.9 47.       inflammation 

Hcls1 hematopoietic cell specific Lyn substrate 1 7.8 48.       inflammation 
Bcl2a1a /// 
Bcl2a1b /// 
Bcl2a1d 

B-cell leukemia/lymphoma 2 related protein A1a /// B-cell 
leukemia/lymphoma 2 related protein A1b /// B-cell 
leukemia/lymphoma 2 related protein A1d 7.8 49.       inflammation 

Ncf1 neutrophil cytosolic factor 1 7.7 50.       inflammation 

Rapgef5 Rap guanine nucleotide exchange factor (GEF) 5 7.6 51.       inflammation 

Lcp2 lymphocyte cytosolic protein 2 7.6 52.       inflammation 

Afp alpha fetoprotein 7.6 53.       inflammation 

Emr1 
EGF-like module containing, mucin-like, hormone receptor-
like sequence 1 7.4 54.       inflammation 

Krt23 keratin 23 7.3 55.       inflammation 

Rassf4 Ras association (RalGDS/AF-6) domain family 4 7.3 56.       other 

Il2rg interleukin 2 receptor, gamma chain 7.2 57.       inflammation 

C3ar1 complement component 3a receptor 1 7.2 58.       inflammation 

2310026E23Rik RIKEN cDNA 2310026E23 gene 7.1 N/A N/A 

BC032204 cDNA sequence BC032204 7 N/A N/A 

Moxd1 monooxygenase, DBH-like 1 7 59.       inflammation 

Pld4 phospholipase D family, member 4 6.9 60.       inflammation 

Cd72 CD72 antigen 6.8 61.       inflammation 

Gatm 
glycine amidinotransferase (L-arginine:glycine 
amidinotransferase) 6.8 62.       inflammation 

Cd68 CD68 antigen 6.7 63.       inflammation 

Fgf5 fibroblast growth factor 5 6.6 64.       wound ECM 

Itgb8 integrin beta 8 6.6 65.       wound ECM 

Ms4a6b membrane-spanning 4-domains, subfamily A, member 6B 6.5 66.       inflammation 

Tnf tumor necrosis factor 6.4 67.       inflammation 

Cfp complement factor properdin 6.4 68.       inflammation 

Slc28a2 /// 
LOC381417 

solute carrier family 28 (sodium-coupled nucleoside 
transporter), member 2 /// similar to solute carrier family 28 
(sodium-coupled nucleoside transporter), member 2 6.3 69.       inflammation 

AI851790 expressed sequence AI851790 6.2 N/A N/A 

Igsf4a immunoglobulin superfamily, member 4A (Cadm1) 6.2 70.       
other (tumor 
supressor) 

Cxcl2 chemokine (C-X-C motif) ligand 2 6.2 71.       inflammation 

Igsf6 immunoglobulin superfamily, member 6 6 72.       inflammation 

Osm oncostatin M 6 73.       Wound  

--- Transcribed locus 6 N/A N/A 

1100001H23Rik RIKEN cDNA 1100001H23 gene 5.8 N/A N/A 
Hdgfrp3 /// 
Tm6sf1 

hepatoma-derived growth factor, related protein 3 /// 
transmembrane 6 superfamily member 1 5.8 74.       inflammation 

Hemt1 hematopoietic cell transcript 1 5.7 75.       other 

Csf2rb2 
colony stimulating factor 2 receptor, beta 2, low-affinity 
(granulocyte-macrophage) 5.7 76.       inflammation 

Hk3 hexokinase 3 5.6 77.       other 
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methabolism 

Lpxn leupaxin 5.6 78.       inflammation 

Fcgr3 Fc receptor, IgG, low affinity III 5.6 79.       inflammation 

Was Wiskott-Aldrich syndrome homolog (human) 5.5 80.       inflammation 

Selpl selectin, platelet (p-selectin) ligand 5.5 81.       inflammation 

C5ar1 complement component 5a receptor 1 5.3 82.       inflammation 
L1cam L1 cell adhesion molecule 5.3 83.       wound ECM  

Igsf4c immunoglobulin superfamily, member 4C 5.3 84.       other adhesion 

Ncf4 neutrophil cytosolic factor 4 5.1 85.       inflammation 

Pilrb1 paired immunoglobin-like type 2 receptor beta 1 5.1 86.       other 

Ly9 lymphocyte antigen 9 5.1 87.       inflammation 

Krt19 keratin 19 5 88.       inflammation 

Ikzf1 IKAROS family zinc finger 1 5 89.       inflammation 

Nckap1l NCK associated protein 1 like (Hem 1) 5 90.       inflammation 

Clec4a2 C-type lectin domain family 4, member a2 5 91.       inflammation 

LOC668101 similar to SIRP beta 1 isoform 2 4.9 N/A N/A 

Ptpn6 protein tyrosine phosphatase, non-receptor type 6 4.8 92.       inflammation 

BC013712 cDNA sequence BC013712 4.8 93.       inflammation 

Ccr1 chemokine (C-C motif) receptor 1 4.8 94.       inflammation 

AI662270 expressed sequence AI662270 4.8 N/A N/A 

Npy neuropeptide Y 4.7 95.       inflammation 

Irf8 interferon regulatory factor 8 4.7 96.       inflammation 

Slc13a3 
solute carrier family 13 (sodium-dependent dicarboxylate 
transporter), member 3 4.7 97.       other Krebs cycle 

Ms4a6c membrane-spanning 4-domains, subfamily A, member 6C 4.7 N/A N/A 

Tlr13 toll-like receptor 13 4.6 98.    inflammation 
Dock10 /// 
LOC630691 

dedicator of cytokinesis 10 /// similar to Dedicator of 
cytokinesis protein 10 (Protein zizimin 3) 4.6 99.    wound ECM 

Apold1 apolipoprotein L domain containing 1 4.5 100.    other (neuro) 

Mrc1 mannose receptor, C type 1 4.5 101.    inflammation 

Ms4a7 membrane-spanning 4-domains, subfamily A, member 7 4.5 102.    inflammation 

Edil3 EGF-like repeats and discoidin I-like domains 3 4.4 103.    wound ECM 

Pla2g7 
phospholipase A2, group VII (platelet-activating factor 
acetylhydrolase, plasma) 4.4 104.    inflammation 

Kctd12 potassium channel tetramerisation domain containing 12 4.4 105.    other markers 

Tlr7 toll-like receptor 7 4.3 106.    inflammation 

Gpr109a G protein-coupled receptor 109A 4.3 107.    inflammation 

Vav3 vav 3 oncogene 4.3 108.    Wound ECM 

Cd53 CD53 antigen 4.3 109.    inflammation 

Plp1 proteolipid protein (myelin) 1 4.3 110.    inflammation 

Lonrf3 LON peptidase N-terminal domain and ring finger 3 4.2 N/A N/A 

Lgi1 leucine-rich repeat LGI family, member 1 4.2 111.    other neuro 
Gm1960 /// 
Cxcl3 gene model 1960, (NCBI) 4.2 112.    inflammation 

Cd52 CD52 antigen 4.2 113.    inflammation 

Sh3bgrl2 SH3 domain binding glutamic acid-rich protein like 2 4.1 114.    other heart devel 

Rnf128 ring finger protein 128 (Grail) 4.1 115.    inflammation 

Ncf2 neutrophil cytosolic factor 2 4.1 116.    inflammation 

Cd93 CD93 antigen 4.1 117.    inflammation 

Cd84 CD84 antigen 4.1 118.    inflammation 
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Rasgef1b RasGEF domain family, member 1B 4 119.    other develop 

Ebi3 Epstein-Barr virus induced gene 3 4 120.    inflammation 

Pdgfb platelet derived growth factor, B polypeptide 4 121.    wound fibrosis  
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Supplementary Table 2: Pten-responsive genes downregulated more than fourfold in the 
Fsp-cre;PtenloxP/loxP vs. PtenloxP/loxP primary mammary stromal cells 
 
Gene Symbol Gene name Difference Reference Role 

Igfbp2 insulin-like growth factor binding protein 2 69.3 122. other  

Fmod fibromodulin 22.3 123. ECM  

Prelp proline arginine-rich end leucine-rich repeat 19.1 124. ECM   

Rerg RAS-like, estrogen-regulated, growth-inhibitor 9.7 125. ECM 

Sned1 sushi, nidogen and EGF-like domains 1 8.4 126. ECM 

Atoh8 atonal homolog 8 (Drosophila) 7.9 127. other  

Efs Embryonal Fyn-associated substrate 6.7 128. inflammation 

Fndc1 fibronectin type III domain containing 1 6.2 129. ECM  

Sfrp1 secreted frizzled-related sequence protein 1 5.8 130. ECM 
E430002G05Rik 
(Pamr1)  

peptidase domain containing associated with muscle 
regeneration 1  131. ECM 

Wisp2 WNT1 inducible signaling pathway protein 2 5.3 132. other  

Ptprz1 
protein tyrosine phosphatase, receptor type Z, 
polypeptide 1 5.0 133. ECM 

Gas6 growth arrest specific 6 4.9 134. inflammation 

Igf1 insulin-like growth factor 1 4.7 135. ECM 

Id4 inhibitor of DNA binding 4 4.7 136. other  

Smoc1 SPARC related modular calcium binding 1 4.6 137. ECM 

Pde8b phosphodiesterase 8B 4.6 138. other  

Pcsk6 proprotein convertase subtilisin/kexin type 6 4.4 139. ECM 

Mfap4 microfibrillar-associated protein 4 4.4 140. ECM  

Syt13 synaptotagmin XIII 4.3 141. other  

Mgp matrix Gla protein 4.3 142. ECM/calcification 

 
 
Biological role affected by the genes downregulated in Fsp-Cre;PtenloxP/loxP  
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Supplementary Table 3: Primers list 

qRT-PCR (Roche; Universal Probe Library Assay Design Center)   
GENE Link UPL L /  R Left primer Right primer 

CD48 NM_007649.4 L387/R441 cgagttgaagataaccctgga tcgacgcttcagtcttattgatt
C1orf38 (BC013712) NM_001033308.2  L1698/ R1743 aagaaacagcagaacatacagagc ctgcggttctacaacttgagg

Ccl12  NM_011331.2 L100/R175 ccatcagtcctcaggtattgg cttccggacgtgaatcttct 
Ccl3 NM_011337.2  L119/R212 tgcccttgctgttcttctct gtggaatcttccggctgtag 

Ccl4  NM_013652.2 L98/ R153 gccctctctctcctcttgct gagggtcagagcccattg 

Cdh1 NM_009864.2  L2282/R2325 atcctcgccctgctgatt accaccgttctcctccgta 

Csf1r NM_001037859.1 L2355/R2410 ccgagggagactccagcta gactggagaagccactgtcc

Cybb   NM_007807.2 L1428/ R1481 tgccaacttcctcagctaca gtgcacagcaaagtgattgg
Ets-2  NM_011809.2 L210/ R264 cagttttcgtgggacactca aagggagcacagcaaacag

Fmod NM_021355.2 L1038/ R1095 cagggcaacaggatcaatg ctgcagcttggagaagttcat

Gas6 NM_019521.2  L1608/R1661 ggatttgctacctacaggctca ttaacttcccaggtggtttcc 

Igfbp2 NM_008342.2  L664/R728 ggaggagcccaagaagttg ggagatccgctccaggac 

Igfbp5 NM_010518.2 L1042/ R1098 ggcgagcaaaccaagataga aggtctcttcagccatctcg 

IL1b  NM_008361.3 L632/ R679 tgtaatgaaagacggcacacc tcttctttgggtattgcttgg 
Itgb8 NM_177290.3 L2124/ R2170 acttctcctgtccctatctcca atctgccaccttcacactcc 

Krt23 NM_033373.1  L660/R700 tcatgaagaaacgccatgag ccttgaagtcactcggcaag
L4 (Rpl4) NM_024212.2  L15/ R89 agcagccgggtagagagg atgactctcccttttcggagt 

LacZ   L180/R226 ggcgattaagttgggtaacg attcactggccgtcgtttta 
Lcp1 NM_008879.2  L197 / R248 tcaacagacgggctgattc agagcagccttgtcaagca

Mmp12 NM_008605.3  L1247/R1299 ttgtggataaacactactggaggt aaatcagcttggggtaagca
Mmp9 NM_013599.2 L1307 /R1374 acgacatagacggcatcca  gctgtggttcagttgtggtg 
Ncf2 NM_010877.4 L1037/ R1083 cttcggattcaccctcagtc gaggtggtggaatatcggatt

Pla2g7 NM_013737.5 L310/ R379 gtatccgggagtcagtgcag agcgcctgcagtttgagt 
Plek NM_019549.1 L1114/ R1156 agtggatcaaagccatccag tcagtgattctcggtgtcctc 

Prelp NM_054077.2 L82/ R133 cagaagagtgccccagagtc atgccctcatgatccaggt 

VE-Cadherin ENSMUST00000034339 L1589/R1645 gttcaagtttgccctgaagaa gtgatgttggcggtgttgt 

Wisp2 NM_016873.1 L297/R362 tcctctgcattctctcaatgg gtgtccaaggacaggcaca
 
 
 
 
 
ChIP primers    

GENE NCBI L /  R Left primer Right pri
Mmp9  NT_039207 L381 / R325 gatggggcattcacctagc gcctcaggtctcccag
Ccl3  NT_096135.5 L260 / R176 gtcctacctcctcctgctca tcagctctcaactcgt

 
 
PCR genotyping    

GENE sens  Primers Product size (bp) 
MMTV-Neu  forward  GGAACCTTACTTCTGTGGTGTGAC   

https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=8AAAB8C239B242D29103104AAB787CC1?seqNo=24396459�
https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=8AAAB8C239B242D29103104AAB787CC1?seqNo=16618215�
https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=8AAAB8C239B242D29103104AAB787CC1?seqNo=9062361�
https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=8AAAB8C239B242D29103104AAB787CC1?seqNo=9655122�
http://qpcr.probefinder.com/showsequence.jsp;jsessionid=A0DD43BAAE0CB0027F4B5347AE5540DB?seqNo=912951483�
https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=F1B7F18DDD9465DAECD4617BF37248B6?seqNo=13200086�
https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=8AAAB8C239B242D29103104AAB787CC1?seqNo=8553126�
http://qpcr.probefinder.com/showsequence.jsp;jsessionid=229F8496DFCD8107309F29F02A934719?seqNo=1768381462�
https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=8AAAB8C239B242D29103104AAB787CC1?seqNo=30489962�
http://qpcr.probefinder.com/showsequence.jsp;jsessionid=0571674B1818F9E0BDB5EBF0CE58F522?seqNo=1250267587�
https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=8AAAB8C239B242D29103104AAB787CC1?seqNo=8586758�
https://qpcr1.probefinder.com/showsequence.jsp;jsessionid=5748B2BDB57EC7D88EF134B44115CABF?seqNo=31253613�
https://qpcr2.probefinder.com/showsequence.jsp;jsessionid=8AAAB8C239B242D29103104AAB787CC1?seqNo=24396459�
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MMTV-Neu  reverse TAGCAGACACTCTATGCCTGTGTG 500bp 

MMTV-PyMT  forward  CAGGGCGGGTCTGAGTCCATGG   

MMTV-PyMT  reverse GGAAAGTCACTAGGAGCAGGG 200bp 

Fsp-cre forward  ATGCTTCTGTCCGTTTGCCG   

Fsp-cre reverse CAATGCGATGCAATTTCCTC 1082bp 

Ets2db forward  AATGACAAGACGCTGGGCGG   

Ets2db reverse CGTCCCTACTGGATGACAGCGG 200bp 

PtenloxP/WT common GGGTTACACTAACTAAACGAGTCC   

PtenloxP loxP GAATGCCATTACCTAGTAAAGCAAGG 300bp/220bp 

Pten-/- deleted GAATGATAATAGTACCTACTTCAG 280bp 

Ets2loxP/WT common CGCTTGCTAGGCAAGTGCTCTACC   

Ets2loxP loxP GCTGACACAGGGTTTTGGTGTCATGC 400/320bp 

Ets2-/- deleted CTAAGCCAGCCTGGCTACAGAACC 450bp 

Rosa26loxP common AAAGTCGCTCTGAGTTGTTAT   

Rosa26WT WT GCGGGAGAAATGGATAT 550bp 

Rosa26-/- transgene GCGAAG-AGTTTGTCCTCAACC 260bp 

teto-myc forward  GGAATGGCAGAAGGCAGG   

teto-myc reverse GCAGTAGCCTCATCATCACTAGATGG 580 bp 

MMTV-rtTA forward  AGTATGCCGCCATTATTACGAC   

MMTV-rtTA reverse CGATGGTAGACCCGTAATTGTT 170 bp 
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Generation of mice with Pten conditional knockout allele
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